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Abstract. We present estimates for an upper limit for twenty-year return-values for 24-hr precipitation at different locations 

in Europe and a crude method to quantify bounds of likely intervals. Our results suggest an increase by as much as 40-50% 

projected for 2100, assuming a high emission scenario, RCP8.5. The new strategy is based on combining physics with the  

limited available information, and utilises the covariance between the mean seasonal variations in precipitation and the North 

Atlantic saturation vapour pressure to estimate the maximum effect that a temperature change can have on precipitation,  

rather than the actual expected values. Return-value projections were derived through a simple and approximate scheme that  

combines the one-year 24-hr precipitation return-value and downscaled annual wet-day mean precipitation for a 1-in-20 year  

event. The twenty-year return-value was estimated by the 95th percentile of multi-model ensemble spread of downscaled 

climate model results. We found geographical variations in the shape of the seasonal cycle of the wet-day mean precipitation  

which suggest that different rain-producing mechanisms dominate in different regions. These differences indicate that the 

simple method used here to estimate upper limits was more appropriate for convective precipitation than for orographic 

rainfall.

1 Introduction

Extreme precipitation is associated with flooding and landslides and can have detrimental  effects on infrastructure and  

society (Trenberth et al, 2003), as for example during the unusually intense cloudburst in central Copenhagen on July 2, 2011 

which caused massive flooding, and the 2002 floods in central and eastern Europe (Hov et al., 2013). Return-values are  

commonly used in planning and design of weather-resilient infrastructure by quantifying the magnitude of a typical extreme  

event. However, the return-values are not stationary, and according to the insurance company Munich Re (Hov et al., 2013), 

there  has  been  an  increase  in  the  annual  number  of  loss-relevant  weather  events.  Assessments  carried  out  by  the  

Intergovernmental Panel on Climate Change (IPCC) indicate that heavy precipitation will become more severe in already 

wet areas in the future (Stocker et al., 2013, Field et al, 2012). These assessments have largely been based on global climate 

model (GCM) output and have not made use of additional local information such as observations. One of the difficulties of 

using observational data is the patchy character of the information because of missing data and short records. GCMs are not  

designed to represent local precipitation statistics corresponding to rain gauge data, but are expected to reproduce the nature  
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of large-scale (regional and global) phenomena and processes seen in the atmosphere and oceans. Also, some elements are  

reproduced  with  higher  skill  than  others.  In  other  words,  GCMs  provide  a  more  reliable  picture  of  the  temperature 

aggregated  over  larger  spatial  scales  than  grid-box precipitation estimates  (Takayabu et  al.,  2016),  and  their  ability  to  

simulate large-scale features can be utilised for inferring changes to local precipitation through downscaling (Benestad et al,  

2008). This caveat also applies to regional climate models (RCMs), which too have a minimum skillful scale (Takayabu et  

al., 2016), and have a limited ability to reproduce the observed precipitation statistics (Orskaug et al., 20122; Benestad and  

Haugen, 2007). However, RCMs have been used to study precipitation extremes (e.g. Frei et al., 2006). The use of RCMs are  

limited to a small number of GCMs due to their heavy computational demands, which means that they will not provide a  

realistic range of possible outcomes, e.g.  associated with natural variability (Deser et al.,  2012). Traditional methods of 

estimating return-values that make use of the extreme value theory (EVT) are sensitive to sampling fluctuations and require 

long data records to avoid extrapolation of the extreme characteristics (Coles, 2001; Papalexiou and Koutsoyiannis, 2013). 

Extreme precipitation modelled through EVT usually describes amounts that are far out in the tail of the distribution and 

associated with low probability, and the estimates may change when new extremes are sampled. Most uses of EVT also 

assume stationarity, although there are ways to account for trends (Cheng et al., 2014). 

There are many different types of phenomena that generate precipitation, e.g., the formation of stratonimbus, mid-latitude  

cyclones, fronts, atmospheric rivers, and convection, as well as warm and cold initiation of rain (Fleagle and Businger, 1980; 

Berg et  al.,  2012; Trenberth et  al.,  2003).  Some of these are more strongly present in certain regions and seasons.  For 

instance, convective precipitation is typically a summer phenomenon at mid-to-high latitudes, whereas mid-latitude cyclones 

are  more  pronounced in  autumn,  winter,  and  spring.  Daily local  precipitation has  been  notoriously difficult  to  predict 

(Stocker, 2013; Field et al. 2012; Arkin et al., 1994), and one reason may be that it has involved a blend of different (both dry 

and wet days) conditions and phenomena but subject to the same analysis without accounting for these differences (e.g. 

monthly mean precipitation mixes wet and dry days). Another reason may be that quantities such as the monthly mean values 

are poorly estimated due to small real samples for locations where it rains less than 30% of the total number of days. 

The problem concerning the quantification of future extreme precipitation is associated with uncertainties from a number of  

sources, many of which are connected with methods and may include model imperfections, sparsity of data, sensitivity to 

random variations in small  samples  such as the tail  of the distribution, non-stationarities,  and representation of  natural  

variability. The latter point may to some extent be explored through the use of large multi-GCM ensembles, however, it is  

interesting to explore extremes from a different angle by posing the research question in the following way: Is it possible to  

extract robust information about extreme precipitation from the multitude of data sources available? Or more specifically, is  

it possible to estimate the upper limits of change in extreme precipitation amounts associated with increased temperature,  

rather than the most likely value, using the available local information in combination with the output of GCM ensembles? 
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2 Data and Method

Our objective is to get robust estimates of future extreme precipitation in situations when local observations are limited and  

avoid some of the caveats described above. Our approach was based on empirical-statistical downscaling (ESD) applied to  

an ensemble distribution to provide estimates of upper limits to return-values for heavy precipitation, and is an alternative to  

EVT-based approaches. It provides more approximate and cruder, but more robust estimates because a larger portion of the 

data sample is used and it is not as sensitive to sampling fluctuations which make small sample statistics highly uncertain.  

Furthermore,  it  differs  from traditional  methods in  that  it  estimates  upper bounds of  extreme precipitation,  rather  than 

attempting  to  specify  the  most  likely  values.  The  analysis  draws  on  available  and  relevant  information  concerning 

precipitation, for instance geographical variations, seasonal variations, ensemble spread, and different physical processes 

present during wet and dry days, respectively. The supporting material (SM) provides more details and explanations for why  

we  chose  the  particular  strategy  for  inferring  changes  in  the  upper  limits  to  return  values  for  precipitation  due  to  a  

temperature change.

2.1 Data

Precipitation observations were obtained from the daily ECA&D dataset  (Klein Tank et  al.,  2002) for 1032 stations in  

northern  Europe  with  data  available  for  the  time  period  1961-2014  (Figure  2).  Surface  temperature  data  from  the  

NCEP/NCAR reanalysis 1 (Kalnay et al, 1996) over the North Atlantic domain were used as predictors in the downscaling, 

and corresponding projections from the CMIP5 ensembles of GCMs assuming the RCP 2.6, 4.5, and 8.5 scenarios (Taylor et 

al, 2011) were used for the projections of future change (Table 1).

2.2 Downscaling method

2.2.1 Predictand: the wet-day mean precipitation

Moderate  extremes  in  24-precipitation  amount  can  be  approximated  with  an  exponential  distribution  (Benestad  et  al,  

2012a,b, Benestad, 2013), which is described with one parameter - the wet-day mean μ. The exponential distribution can be  

used to estimate changes in the moderate upper tail of the statistical distribution, assuming that these follow changes in the  

bulk characteristics where the probability adds up to unity (Benestad and Mezghani, 2015). It simplifies the analysis and can  

be used to provide an estimate of return-values for more extreme extremes if its parameter is derived from years with high  

annual wet-day mean precipitation. In other words, making use of conditional probabilities à la the type of Bayesian statistics 

described in Benestad et al. (2012b), which makes the strategy well-suited to address the question of how we can quantify  

changes in the return-values associated with a global warming. 

We explored the sensitivity of μ to changing factors. The wet-day mean μ, rather than the mean precipitation ( x ), was 

downscaled, because μ provides a ‘cleaner’ representation of the typical precipitation amount. A comparison between the  

seasonal dependence of the traditional mean precipitation, wet-day frequency fw, and μ indicates a stronger seasonal cycle in 
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μ than in x  or fw. The difference in the seasonal cycle is due to the blending of different types of weather conditions in the  

traditional mean. The wet-day mean precipitation is useful for risk analysis; previous work suggests that it can be used to  

estimate upper percentiles of 24-hr precipitation amounts since wet-day 24-hr precipitation is approximately exponentially  

distributed for low to moderately heavy precipitation amounts, implying that the wet-day 95-percentile is expected to change 

in proportion with the wet-day mean (Benestad et al, 2012a,b, Benestad, 2013; Benestad and Mezghani, 2015).

2.2.2 Predictor: the saturation vapour pressure

We  assumed  that  the  vapour  saturation  pressure,  es, is  more  linearly  related  to  the  atmospheric  water  content  and 

precipitation than is temperature, and hence used es as a predictor in the downscaling of μ (Fujibe, 2013; Pall et al., 2007;  

Benestad and Mezghani, 2015). The saturation vapour pressure was estimated from the surface temperature, T, according to  

es = 10(11.40–2353/T). This approximation was based on integration of the Clausius-Capeyron equation, assuming a constant latent 

heat of vaporisation (see Equation 2.89 in Fleagle and Businger, 1980). 

The regional  average  es over  the North  Atlantic  domain (100°W-30°E/0°N-40°N) was used  as  predictor  of  μ  with the 

motivation that it can be considered a source region for humidity in Europe. The predictor index was calculated from gridded 

temperature data from reanalyses and global climate models (GCMs) and then spatially and temporally aggregated, where 

monthly gridded es values from the multi-model ensemble were used to produce (downscale) an ensemble of local results of 

μ.

2.2.3 The empirical-statistical model

A model for predicting the wet-day mean precipitation (the prediction for the wet-day mean is referred to as 
μ̂

, whereas the 

original wet-day mean is just μ) can be constructed as a sum of a constant β 0, a term depending on the saturation vapour 

pressure βTes, and a Gaussian noise term N(0,σ), assuming that factors other than temperature affecting wet-day precipitation 

are stochastic and stationary:

μ̂=β0+ βT es+N (0,σ )  , (1)

As an estimate of the standard deviation σ of the noise term N, we used the observed standard deviation of μ in the month 

with the highest inter-annual variability, which in this case is August. We used R 2 to quantify the ratio explained variation 

(var( μ̂ ) with the noise term is taken to be zero) to the total variation (var(μ)). The assumption that only  es influences 

precipitation  is  often  not  true,  and  hence  the  model  
μ̂

 represented  an  upper-limit  approximation  of  the  effect  that 

temperature changes can have on μ, rather than a most likely value.

Different downscaling models (Equation 1) were derived for each location based on a regression between the monthly mean 

seasonal cycle of μ (see section 2.2.1) and the corresponding mean seasonal cycle of the regionally averaged North Atlantic  
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es (section 2.2.2) calculated from reanalysis temperature data. Annual mean time series of μ were then derived by applying 

the downscaling models to annual mean es time series obtained from reanalysis or GCM temperature data. 

A 90% confidence interval for the upper limit estimates was estimated for the projections based on both the ensembles of 

downscaled results as well as the noise term N(0,), taken as the limit between the 5th and 95th percentiles (e.g Figure SM11 

in  the  SM).  This  interval  captured  the  observed  year-to-year  variations  as  well  as  model  differences,  as  internal 

nondeterministic interannual-to-decadal variations account for much of observed variability as well as differences between 

climate model simulations (Deser et al., 2012). We assumed that the multi-model ensemble spread for any given year could  

approximately  represent  the  typical  year-to-year  variance,  and  hence  the  95th  percentile  for  the  annual  wet-day  mean 

precipitation μ̂  was used as a proxy for the value to be exceeded once in 20 years on average (Benestad, 2011). 

2.3 Return-value probabilities

We replaced the general mean μ with the 20-year return-value for the mean  μ̂  (represented by the symbol μ'), and the 

probability for 24-hr precipitation exceeding a critical threshold x was calculated based on the assumption that the wet-day 

precipitation-amount is exponentially distributed: 

f ( X > x)= f we−x/ μ

, (2)

The probability for the one-year return-value for 24-hr precipitation is approximately Pr(X > x) = 1/365.25, and for data that  

are close to being exponentially distributed, the corresponding threshold value can be approximated according to:

x1year=μ ’ ln (365.25∗ f w ) , (3)

If the return-values associated with the 24-hr precipitation are related to the annual wet-day mean, as in Equation 3, then it is  

possible to make a rough estimate of the 20-year return-value for the 24-hr precipitation amount based on the 20-year return-

value for μ’. Previous comparison between the return-values based on Equation 3 and general extreme value theory, suggests 

that they give roughly similar results (Benestad and Mezghani, 2015). A test of Equation 3 indicates that the return-values 

scale with μ, and that x1year associated with high quantiles and low values of μ approximately correspond to x1year with low 

quantiles and high values of μ (Figure SM1). Hence, estimates of the 20-year return-value for 24-hr precipitation can be  

estimated approximately using Equation 3 and taking μ to be the 95th percentile. 

2.4 Principle component analysis of the seasonal cycle

Principal component analysis (PCA) was used to extract the most dominant shapes of the seasonal cycle in μ amongst the 

locations (Figure 2). The mean seasonal cycle was estimated for each site, taking the calendar month mean, and used to  

construct a data matrix X. Singular value decomposition (SVD) was then used to compute the principal components: UΣVT = 

X, where  U is the left inverse,  V the right inverse, and Σ is a diagonal matrix holding the eigenvalues (Press et al., 1989; 

Strang, 1988). The procedure deconstructs the data into a set of shapes of the seasonal cycle, corresponding eigenvalues that 
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describe the explained variance,  and a spatial  matrix  that  describes  the relative strength of  each shape at  the different 

locations. The analysis presented here was carried out with the open-source R-package ‘esd’ (Benestad et al., 2015), and the  

R-scripts are provided in the SM.

3 Results and discussion

3.1 Seasonal cycles of μ and es

Our results show that the mean seasonal cycles of μ at many European locations covaries with the mean seasonal cycle of es 

in the North Atlantic domain. This can be seen as a validation of the assumptions underlying the empirical model (Equation 

1). Figure 1 provides an example of a scatter plot between the mean seasonal variations in es (x-axis) and the corresponding 

cycle in μ (y-axis) for one location (Velikie Luki, Russia). The example in Figure 1 is not unique: there is a high and  

statistically significant correlation (R2 > 0.6) between the seasonal cycle of these two quantities for many of the rain gauge 

records (612 of the 1032 stations; Figure SM2). The majority of the locations with a poor fit ( R 2 < 0.6) are found along the 

Norwegian west coast and southeast of the Alps (see Figure 2 where the size of the markers is proportional to R 2), while 

inland sites and locations in central Europe have higher R2 values. This indicates that a linear relationship between μ and es 

cannot be expected in regions where orographic precipitation is dominant. Downscaled projections are produced only for the 

locations with a good fit ( R2 > 0.6 corresponding to 65% of the total sample, see Figure SM2). 

It is also evident that there are pronounced year-to-year variations in the wet-day mean (vertical error bars in Figure 1) which  

are not related to the temperature, suggesting that factors other than temperature also play a role in precipitation variations.  

The downscaling strategy adopted here is designed to evaluate the maximum potential effect of temperature changes on the  

wet-day  mean.  Since  other  processes  also  influence  precipitation,  the  method  cannot  be  expected  to  reproduce  past  

interannual variability, but it can be used to obtain a rough estimate of the effect of temperature changes on precipitation. 

Figure 2 presents maps showing the two major components of the mean seasonal cycle in μ, which together account for 94%  

of the variability for the 1032 locations examined. There is a positive correlation between R2 from the regression analysis 

(equation 1)  and the spatial  vector of the leading PC: 0.82 (with 90% confidence interval  of 0.80, 0.84),  but  negative  

correlation for mode 2 (-0.84; conf. int. -0.86,-0.82) and none for mode 3 (0.00; conf. int. -0.06, 0.06). The spatial patterns in  

the PCs reveal different seasonal cycles of precipitation along the mountainous western coast of Norway and close to the  

Alps compared to the rest of Europe, probably related to orographic effects. There is a gradient in the shape of the mean  

seasonal cycle in μ with the distance from the coast that is particularly visible over the Netherlands. Inland sites tend to 

indicate higher precipitation intensities during July and August, which can be associated with convective rainfall. 
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3.2 Projections of future precipitation

Projected values for μ, based on the downscaling model (Equation 1) applied to the CMIP5 ensemble, are shown in Figure 3.  

The downscaled results suggest an increase of up to 13% in the wet-day mean from 2010 to 2100, assuming the RCP 4.5 

emission scenario (Stocker et al, 2013), and as much as 38% at many of the locations given the high emission scenario  

RCP8.5. The most extreme upper limit estimate is an 85% increase at Sihccajavri (Norway).  Since the wet-day precipitation 

amount approximately follows an exponential distribution, the proportional change in any percentile is the same as for μ. 

The insert in Figure 3 shows estimated changes for the emission scenarios RCP4.5, RCP2.6 and RCP 8.5, respectively, for 

both the ensemble mean and 95th percentile. 

Historical observations provide some indication of skill of the downscaling models in terms of predicting trends of μ based  

on the North Atlantic temperature (Figure SM3). The historical trends exhibit a more pronounced scatter than the predicted 

trends, suggesting that factors other than the sea surface temperature also have influenced the long-term changes. For most  

locations, there has been an increase in μ between 1961 and 2014, typically ~0.1 mm/day per decade (Figure SM3-4). 

Estimates of future 20-year return-values based on the downscaled μ and assuming a constant value the wet-day frequency, 

fw, are shown in Table 2: Based on downscaling of the RCP4.5 scenario, the 20-year return values could increase by between  

7% and 28% (ensemble median: 11%), or assuming the high emission scenario RCP8.5, between 22% to 85% (ensemble 

median: 33%). Nevertheless, changes in fw may also influence the return-values, and an increase in the number of rainy days  

would imply an even stronger change in return-values. When accounting for the wet-day frequency, the 20-year return-

values can be estimated based on the 99-percentile of the wet-day distribution (Figure SM5). The historical fw trends at the 

stations tend to cluster roughly around zero (Figure SM6). However, studying the geographical pattern of trends, we see a 

general increase in southern Scandinavia and the Netherlands, and a less coherent pattern elsewhere (Figure SM7). This 

further supports the interpretation that factors other than the North Atlantic temperature also play a role for past trends and  

future  changes.  In  this  sense,  the  estimation  strategy  represents  a  “worst-case”  precipitation  change,  taking  only  the  

temperature change into consideration.  The wet-day frequency is strongly influenced by the circulation patterns (Benestad  

and Mezghani, 2015) and could potentially be predicted based on the mean sea-level pressure, but here we have focused on  

the influence of temperature changes on the precipitation. 

One relevant question is whether the high-end tail of the wet-day precipitation distribution changes proportionally with the 

change in more moderate events (Pall et al., 2007). An analysis of past variations suggested that return-values representing 

the high-end of the tail of the distribution for years with low annual μ changed proportionally with return-values in the 

moderate parts of the tail for years with high annual μ, as expected for an exponential distribution (Figure SM1). This is an  

important condition, as our method makes use of the percentiles corresponding to a one-in-a year event (p = 1 - 1/365.25), 

but replaces the mean value of μ with a one-in-twenty year event based on the 95-percentile of the downscaled ensemble 

results. 
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In order to assess the veracity of our results we include an independent test to examine the dependency of μ to temperature. It 

consisted of a regression analysis comparing the geographical distribution in the seasonal cycles of μ and the saturation  

vapour pressure es calculated from local temperature measurements (Benestad, 2007) (see Figures SM8-9), and was limited  

to locations where both temperature and precipitation observations were available. The independent test did not involve the  

regionally  averaged  temperature  of  the  North  Atlantic  domain.  The  sensitivity  of  the  geographical  variations  in 

climatological μ to temperature was consistent with regression coefficients on which the results in Figure 3 were based 

within the range of estimated error margins (Figure SM9). An exception was (again) seen in stations located in western  

Norway and south of the Alps with low R2.

One of the benefits of the proposed strategy for downscaling μ is that the description of the seasonal cycle does not require 

long data records and hence may provide a means for estimating an upper limit to the change in rainfall statistics associated  

with a temperature change in regions with limited observations. This strategy can be used for other mid-latitude locations,  

but further analysis is needed to see if it is applicable to the monsoon regions where the temperature is at maximum before 

the rains start. An alternative approach could be to estimate future changes in μ based on downscaled local temperature from  

GCMs and a similar regression model as used in the test. 

4 Summary and conclusions

We propose a novel and simple method for estimating an upper limit to changes in the return-values for 24-hr precipitation 

caused by a temperature change, rather than trying to estimate the exact value taking all precipitation relevant processes into  

account. This method makes use of the limited available information, embedded in the seasonal cycle, physical conditions,  

and multi-model ensembles,  to provide a rough estimate of the effect  a temperature change may have on precipitation 

statistics. The approach is based on a set of assumptions: (a) the maximum seasonal mean response of μ to the seasonal  

variations  in  temperature  is  represented  by  a  proportional  change,  (b)  the  95-percentile  of  the  annual  wet-day  mean 

precipitation from large multi-model ensembles such as those from CMIP can be used to represent a 20-year event, and (c)  

the wet-day frequency is stationary. On the one hand, this new strategy is less rigorous than traditional  extreme value 

statistics, but on the other hand, it makes the most out of the available information and is thus more robust. The results  

suggest that the upper bound of the twenty-year return-value for many European locations increases by 40-50% by 2100, 

given the RCP8.5 scenario.
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Table 1. Summary of the CMIP5 experiments. The RCP4.5 was used as default here, whereas RCP2.6 
and 8.5 were taken as lower and upper limits based on different emission scenarios.

Ensemble Total ensemble size (with duplicated 
models)

RCP4.5 108 runs

RCP2.6 81 runs

RCP8.5 65 runs

Table 2. Summary of the projected change in the 20-year return-value for 24-hr precipitation under the 
assumption of stationary wet-day frequency. The sample comprises the 615 locations shown in Figure 3 
and provides a concise summary. The numbers represent the change in percentage with respect to year 
2010. 

Min.  1st Qu. Median
 

Mean 3rd Qu. Max.

RCP2.6 4%         5% 6% 6% 7%  14%

RCP4.5 7%     10%  11% 13%  15% 28%

RCP8.5 22%            28% 33% 38% 44% 85%
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Figure 1. A comparison between the mean seasonal cycle in the saturation vapour pressure (xaxis) and 
the wet-day mean (y-axis). The error bars indicate two standard deviations of the
year-to-year differences in the two variables, and the insert presents standardised values
associated with each calendar month, both peaking in July-August.

Figure 2. The weights for the two leading principal components (panels a and b) of the seasonal
cycle of the wet-day mean precipitation μ in the 1032 rain gauge records. The colour of the symbols 
indicate how strongly the shape is present in the local seasonal cycle, and the size
reflects R2 from the regression analysis between es and μ (see Figure SM2). The shape of the seasonal 
cycle principal component for μ is shown in the insert (top right of each panel).
  

Figure 3. Projected local change from 2010 to 2100 in the ensemble mean and 95th percentile
annual mean μ for the RCP4.5 emission scenario. The colour of the inner part of the symbols
indicate changes in the ensemble mean and the outer part the 95th percentile in terms of
percentages since 2010. The insert shows a boxplot of the projected change in μ, both for the ensemble 
mean  (left)  and  the  95th percentile  (right)  of  emissions  scenarios  RCP4.5,  RCP2.6,  and  RCP8.0 
respectively.
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